Portland Harbor Sediment Toxicity Assessment — Uncertainty Analysis

John Toll, PhD

......

SETAC North America 46th Annual Meeting Session 2.09.T—Large River Monitoring: Programs, Design, Methods and Interpretations

Thursday, November 20, 2025

.....

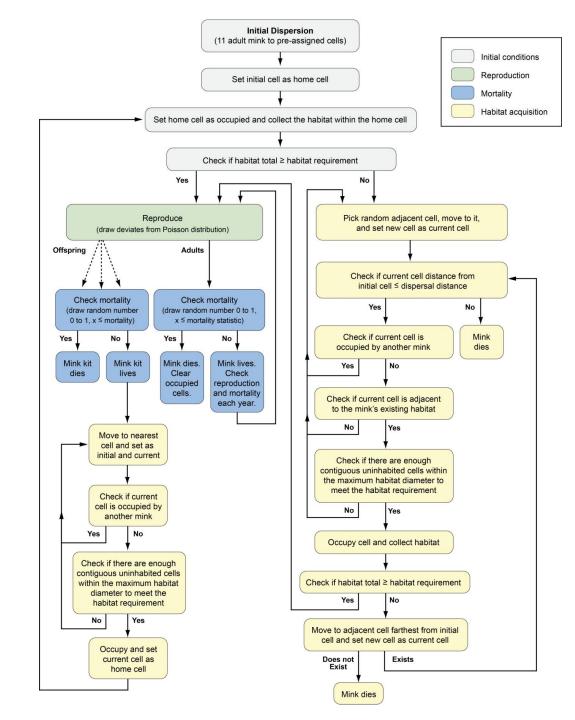
Portland Harbor Baseline Ecological Risk Assessment

- Great example of ecological risk assessment for large river sites
- One small piece: analyzing uncertainty in sediment toxicity test findings

Search for Portland Harbor Remedial AR File Baseline Ecological Risk Assessment

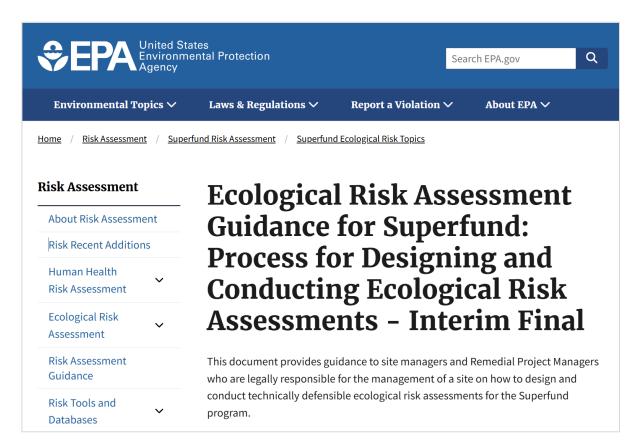
Date Search Date ▼	Title Search Title	Doc ID Search Doc ID △	Author Search Author	Addressee Search Addressee
06/08/2016	Portland Harbor Remedial AR File Baseline Ecological Risk Assessment Index (1 pp, 10.03 KB)	790001		
12/16/2013	Final Remedial Investigation Report Appendix G Baseline Ecological Risk Assessment Final. Final, Volume I. (870 pp, 404.3 MB)	1432515	(Windward Environmental, LLC)	(EPA); (Lower Willamette Group (LWG))
12/16/2013	Final Remedial Investigation Report Appendix G Baseline Ecological Risk Assessment Final. Final, Volume II Attachments. (1096 pp, 83.11 MB)	1432516	(Windward Environmental, LLC)	(EPA); (Lower Willamette Group (LWG))
Date	Title	Doc ID	Author	Addressee

https://cumulis.epa.gov/supercpad/cursites/cscdocument.cfm?id=1002155&doc=Y&colid=34384


.....

Portland Harbor Baseline Ecological Risk Assessment

Also of interest


Luxon, Toll and Hanson. 2013. Assessing Effects of PCB Exposure on American Mink (*Mustela vison*) Abundance in Portland Harbor. IEAM 10(1):20-68.

Overview of the process

Iterative approach to ecological risk assessment (EPA, 1997)

- 1. Screening-level problem formulation and ecological effects evaluation
- 2. Screening-level preliminary exposure estimate and risk calculation
- 3. Baseline risk assessment problem formulation
- 4. Study design and data quality objectives
- 5. Field verification of sampling design
- 6. Site investigation and analysis of exposure and effects
- 7. Risk characterization
- 8. Risk management

https://semspub.epa.gov/work/HQ/157941.pdf

Overview of the process

- No guidance document can describe procedures to fully evaluate ecological risks at sites as complex as Portland Harbor
- Numerous site-specific procedures, methodologies, memoranda, and intermediate data reports and analyses have been developed and presented in documents prepared by the Lower Willamette Group, in collaboration with and under the oversight of EPA and federal, state, and tribal partners
- My goals for today:
 - Pique your interest
 - Make you aware of available resources
 - Let you know I'm eager to help

PORTLAND HARBOR RI/FS FINAL REMEDIAL INVESTIGATION REPORT

APPENDIX G BASELINE ECOLOGICAL RISK ASSESSMENT

FINAL

Volume I

December 16, 2013

Prepared for

The Lower Willamette Group and United States Environmental Protection Agency

Prepared by

Windward Environmental LLC

https://cumulis.epa.gov/supercpad/cursites/cscdocument.cfm?id=1002155&doc=Y&colid=34384

The environmental risk assessor's job

.....

Rigorously characterize nature and extent of environmental risk associated with a site or situation

Advance state of the science

Uncover facts that are difficult to discover

Build trust

Invertebrate sediment toxicity assessment

 Reference envelope approach (MacDonald and Landrum 2008) provided as BERA Attachment 6, Part B

An Evaluation of the Approach for Assessing Risks to the Benthic Invertebrate Community at the Portland Harbor Superfund Site

Preliminary Draft

Prepared for:

U.S. Environmental Protection Agency Oregon Operations Office 805 SW Broadway, Suite 500 Portland, Oregon 97205

and

Parametrix, Inc. 33972 Texas Street SW Albany, Oregon 97321

Prepared - September, 2008 - by:

D.D. MacDonald MacDonald Environmental Sciences Ltd. #24 - 4800 Island Highway North Nanaimo, British Columbia V9T 1W6 P.F. Landrum Landrum and Associates 6829 Earhart Road Ann Arbor, Michigan 48105

111111111111111111

Invertebrate sediment toxicity assessment

......

- Two predictive benthic toxicity models selected after extensive consultation with EPA and others
 - Floating percentile model (FPM) (Regional Sediment Evaluation Team 2009)*
 - Logistic regression model (LRM) (Field et al., 1999)
- FPM and LRM used to develop site-specific sediment quality values (SQVs)
 - Identified chemicals most associated with sediment toxicity
 - For each chemical, developed a site-specific
 SQV to predict sediment toxicity to benthic
 organisms with an estimated degree of reliability

*The RSET Sediment Evaluation Framework was updated in 2016 and published in May 2018

(https://usace.contentdm.oclc.org/digital/collection/p16021coll11/id/684/)

May 2009

SETAC PRESS

Environmental Toxicology and Chemistry, Vol. 18, No. 6, pp. 1311–1322, 1999

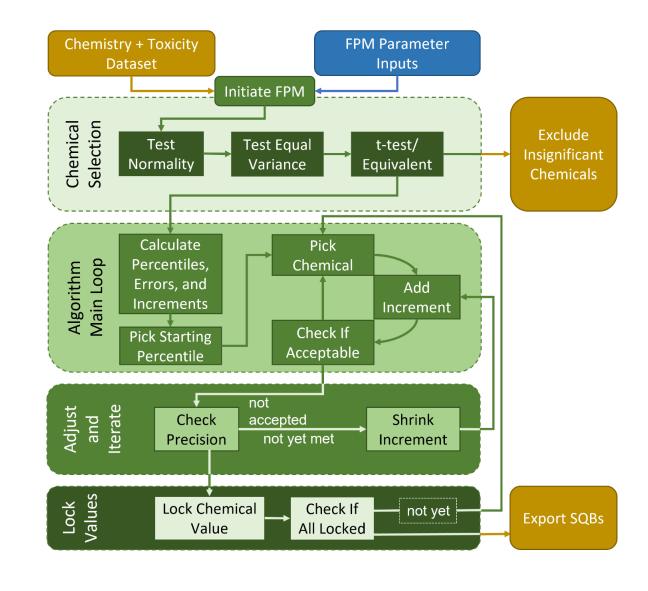
Printed in the USA

0730-7268/99 \$9,00 + .00

EVALUATING SEDIMENT CHEMISTRY AND TOXICITY DATA USING LOGISTIC REGRESSION MODELING

L. JAY FIELD, *† DONALD D. MACDONALD, † SUSAN B. NORTON, §

CORINNE G. SEVERN, and CHRIS G. INGERSOLL#
†Office of Response and Restoration, National Oceanic and Atmospheric Administration,
7600 Sand Point Way NE, Seattle, Washington 98115, USA


†MacDonald Environmental Sciences Ltd., 2376 Yellow Point Road, R.R. 3, Ladysmith, British Columbia VOR 2E0, Canada §National Center for Environmental Assessment, U.S. Environmental Protection Agency, 401 M Street SW, Washington, DC 20460 ||EVS Consultants, 200 W. Mercer Street, Seattle, Washington 98119, USA #U.S. Geological Survey, 4200 New Haven Road, Columbia, MO 65201

(Received 19 March 1998; Accepted 11 September 1998)

Floating percentile model

.....

- Original software a "black box"
 - Limited user control
 - Locked access to the tool's underlying code
 - Not readily available
- Our package implements the FPM in R
 - Expanded user controls
 - Open code
 - Readily available for public use and evaluation

https://www.barr.com/floating-percentile-model/

Invertebrate sediment toxicity assessment

 FPM and LRM performance assessed with reliability framework (EPA, 2010) in September 2010 letter to Lower Willamette Group (from E. Blischke and C. Humphrey to R. Wyatt) about Portland Harbor Superfund site: EPA comments on benthic risk evaluation

.....

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 OREGON OPERATIONS OFFICE

805 SW Broadway, Suite 500 Portland, Oregon 97205

September 27, 2010

Mr. Bob Wyatt Northwest Natural & Co-Chairman, Lower Willamette Group 220 Northwest Second Avenue Portland, OR 97209

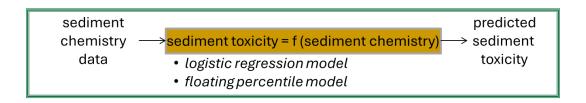
Re: Portland Harbor Superfund Site; Administrative Order on Consent for Remedial

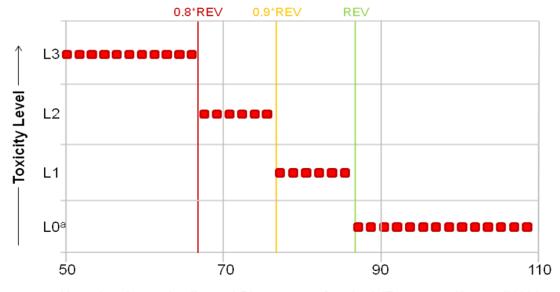
Investigation and Feasibility Study; Docket No. CERCLA-10-2001-0240

EPA Comments on Benthic Risk Evaluation

The data and how they were used

.....


Test and endpoint	REV (%)	0.90*REV	0.80*REV
C. dilutus survival	93.9	84.5	75.1
C. dilutus biomass	91.0	81.9	72.8
H. azteca survival	88.1	79.3	70.5
H. azteca biomass	73.6	66.2	58.9


The data and how they were used

......

1,920 surface sediment chemistry samples-293 sediment toxicity test samples

1,627 toxicity predicted from chemistry

Negative Control-adjusted Biomass or Survival (Treatment/Control)*100 (The REV in this example is for *Hyalella* survival.)

Uncertainty analysis*

- Calculates probability that each bioassay sample was assigned to the correct toxicity category
- Likelihood calculation quantified the probability that the sample's true mean response fell between the toxicity thresholds indicated by the sample mean
- Accounts for:

.....

- Variance in bioassay replicates
- Uncertainty in magnitude of mean control response

Toxicity Test Results

and Other Supporting

Information

Attachment 6

Predictive Benthic Toxicity Models

Section 6.2

Chemical Selection

for Model Development

Section 6.2.1

Floating Percentile Model

Section 6.2.2

Logistic Regression Model Section 6.2.3

> SQV Derivation Section 6.2.4

Uncertainty Associated

with Predicted Toxicity

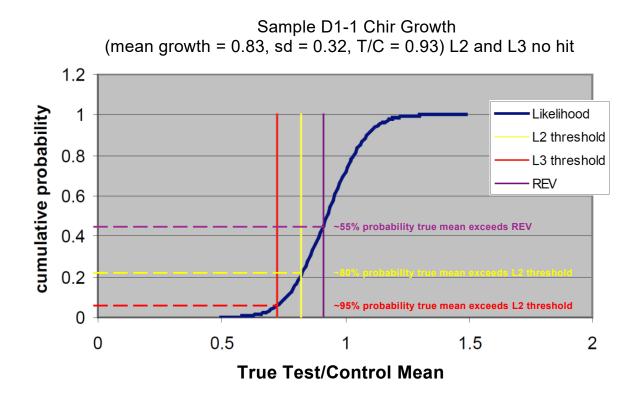
Section 6.2.5*

Risk Characterization Based on Site-Specific SQVs Section 6.2.6

Potential Future Risks to the

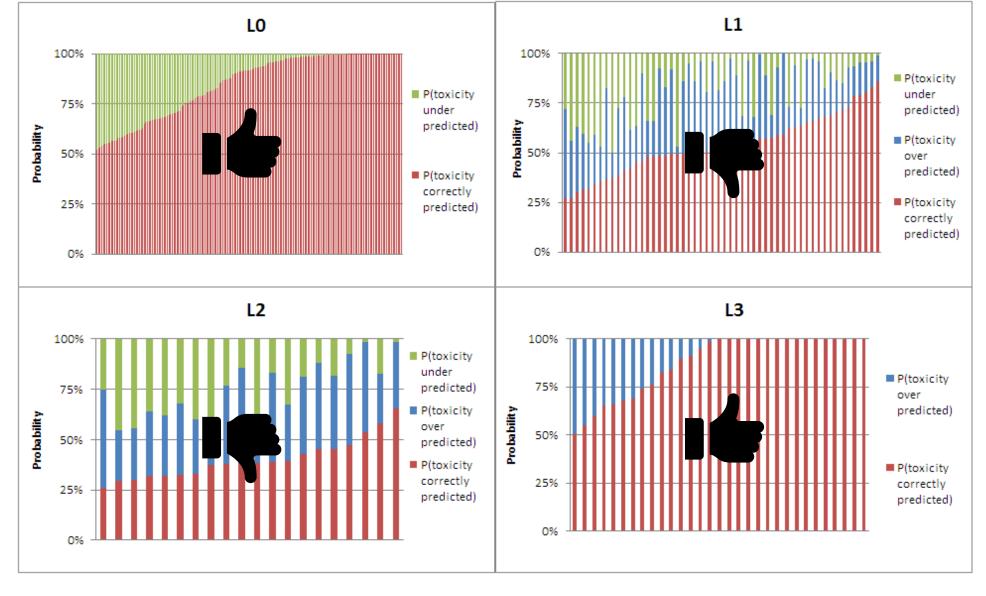
Benthic Community

Section 6.2.7


²⁰⁰ West Mercer St. • Suite 401 • Seattle, WA 98119
Phone: 206.378.1364 • Fax: 206.217.0089 • www.windwardenv.com

MEMORANDUM

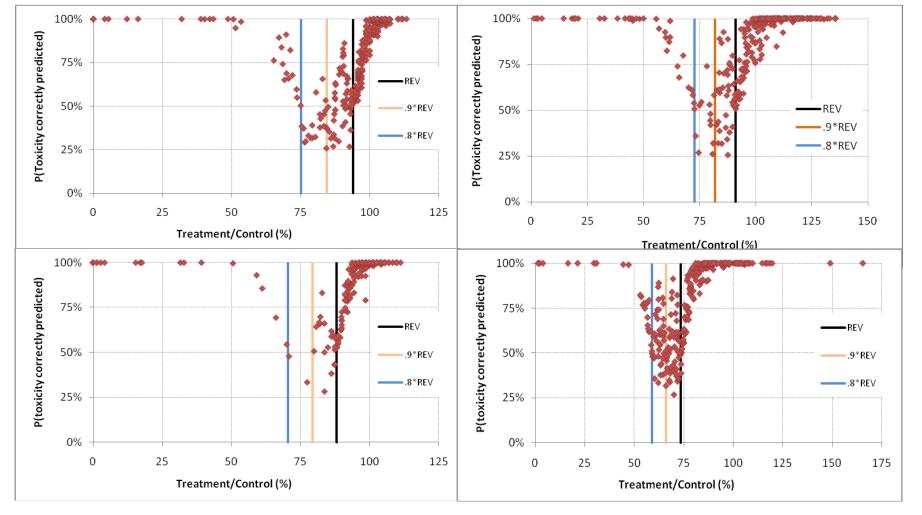
To: Eric Blischke, US Environmental Protection Agency
From: John Toll, Lorraine Read, Nancy Musgrove, Lucinda Tear
Subject: Quantification of Uncertainty in Portland Harbor Bioassay Responses
Date: November 30, 2010


^{*}Final Remedial Investigation Report, Appendix G (BERA), Attachment 6 (Toxicity Test Results and Interpretation), Part C (Uncertainty Analysis) (pp. 119-126)

Cumulative probability distribution on true mean response for particular sample and endpoint (D1-1, *Chironomus* growth)

$$-\ln L(\mu \mid X, s^{2}) = \sum_{i=1}^{8} \ln(s\sqrt{2\pi}) + \frac{(X_{i} - \mu)^{2}}{2s^{2}}$$

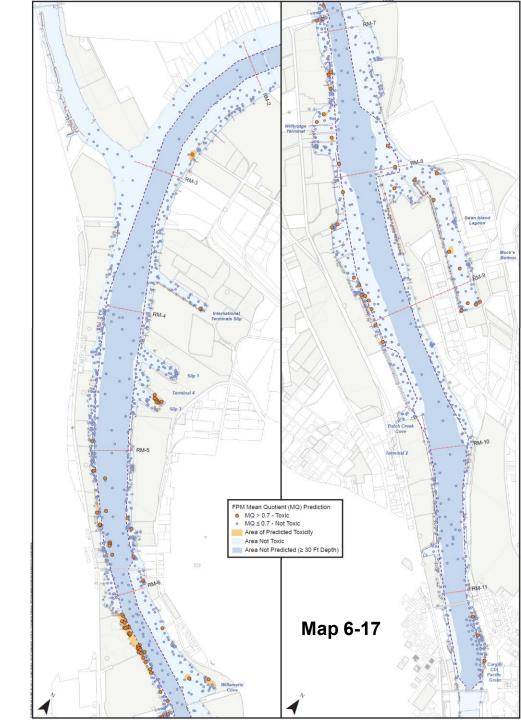
- Estimate sample variance s² for eight replicates
- 2. Estimate the negative log-likelihood for each possible value of μ
- 3. Convert negative log-likelihoods to likelihoods (multiply by -1 and exponentiate)
- Divide individual likelihoods by sum of all likelihoods to convert likelihood values to a probability distribution
- 5. Treatment of uncertainty due to variance in control response: see Attachment 6, Part C, pp. 121–122


Stacked bar graphs of probabilities that toxicity is correctly predicted, underpredicted, or over-predicted based on Bayesian posterior probabilities. Each bar represents a bioassay station.

Probability of correctly predicting bioassay hit classification

......

Chironomus



Hyalella

Summary of findings

- Understanding reliability of bioassay hit classifications influenced risk characterization methods and findings
- Multiple lines of evidence needed to support potentially unacceptable benthic risk conclusions based on L2 hits
- Potentially unacceptable benthic risks:
 - Highly associated with shoreline areas, slips, and areas of elevated sediment chemical concentrations
 - Represent appx. 7% of total study area

Conclusion

- Portland Harbor BERA: large river investigation involving at least three of the four elements of the environmental risk assessor's job
 - Advanced state of the science
 - Advanced scientific rigor of characterizing nature and extent of environmental risk associated with a site or situation
 - Uncovered facts that were difficult to discover
 - Provided trial by fire for building trust and integrity
- There's a fifth element of the environmental risk assessor's job: translating risk findings into risk management decisions
 - We built the tools to assess reliability, but we didn't do enough to translate reliability analysis into simple cleanup metrics

Thank you

.....

John Toll jtoll@barr.com 206-913-3292

